
Classical methods poorly capture chemical structures [2]. We lose:
Structural info – The molecule is just a vector

Quantity info – The vector is binary, we don’t know the quantity of each atom
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Conclusions & Future Directions

We explore the cutting edge of neural network architectures for Ames prediction

We show that transformer-based graph neural networks achieve near-state-of-the-art performance for Ames mutagenicity prediction

Our method is extensible - The Python code is written in a modular form allowing future architectural developments, such as FlashAttention2, 

to be incorporated and improve performance without the need to re-write the whole code-base.

With the addition of uncertainty estimation, our model has direct regulatory application and fulfills OECD requirements
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The Ames Test 

How can we solve these problems? – Graph Transformers

Why In silico? 
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How does the Ames test work? [1]
1. Inoculate an empty plate with histidine-dependent Salmonella

2. Add a control to one plate, and the suspected mutagen to another

3. If the plate shows more, a mutagen’s for sure; if it’s scant and 

bare, no mutagen there.

The Ames test is great…

But it’s expensive at scale

15 000 new molecules daily * $2000 each = Too expensive to test everything [3]

However, we can’t just take Ames in silico. It’s too unreliable:

We aim to:

1. Improve Ames models by incorporating chemical structure into the network

2. Leverage a cutting-edge graph transformer approach

We hypothesise that:

1. Our graph transformer will achieve near-state-of-the-art performance

2. A working model is trainable with current hardware & Ames data availability

So, our approach is:

• Give the network extra positional information via new encodings

• Make the network “pay attention” to each atom’s local neighbourhood

All enabled by the transformer!

Figure 3. The input and architecture of our model – The Ames graph transformer
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Equation 1. The ROC-AUC formula

Figure 1. The Ames test
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Figure 2. Classical neural network for predicting Ames mutagenicity
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