An Introduction to the Ames test and computational modelling

The Ames Test « Why In silico? &

The Ames test is great...
But it’s expensive at scale

15 000 new molecules daily * $2000 each = Too expensive to test everything [3]

However, we can't just take Ames in silico. It's too unreliable:
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Figure 1. The Ames test Conventional Neural Network

How does the Ames test work? [1]

1. Inoculate an empty plate with histidine-dependent Salmonella

2. Add a control to one plate, and the suspected mutagen to another

3. If the plate shows more, a mutagen’s for sure; if it’s scant and
bare, no mutagen there.

Figure 2. Classical neural network for predicting Ames mutagenicity

Classical methods poorly capture chemical structures [2]. We lose:
Structural info — The molecule Is just a vector
Quantity info — The vector is binary, we don’t know the quantity of each atom

How can we solve these problems? — Graph Transformers

We aim to:
1. Improve Ames models by incorporating chemical structure into the network
2. Leverage a cutting-edge graph transformer approach

We hypothesise that:
1. Our graph transformer will achieve near-state-of-the-art performance
2. A working model is trainable with current hardware & Ames data availability

So, our approach is: Positional information
» Give the network extra positional information via new encodings Where am | In the space
_ _ of the whole molecule?
 Make the network “pay attention” to each atom’s local neighbourhood Spatial
All enabled by the transformer! " Encoding
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“What do the bonds of my
neighbours look like?”
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Equation 1. The ROC-AUC formula

Conclusions & Future Directions
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Figure 3. The input and architecture of our model — The Ames graph transformer
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